A unique appreciation of life and a better understanding of the living world are gained through studying the Biological Science course. Students develop a range of practical skills through investigations and field work.

Biological Science 2AB

This is a single Biological Science course which provides opportunities for applied learning but there is a focus more on academic learning. It is for students to develop an advanced understanding of adaptations for survival and patterns of change.

Recommended Background

To be successful in this course, it is recommended that students should have completed Biological Science 1AB, or achieved an A/B grade in Life and Living (Science); and A/B grade in English.

Commitment

Students will be required to complete 1 hour of general study per week; minimum of 2 hours of homework per week; 30 minutes minimum of daily revision and partake in up to two excursions per year.

Course Content (2A)

During this course students will:

- Identify and explain classification as a hierarchical system;
- Identify and explain the main classification groups: kingdom, phylum, class, order, family, genus, species;
- Explain binomial nomenclature and the use of taxonomic keys;
- Identify and explain the role of organisms including autotrophs, heterotrophs and decomposers in the ecosystem;
- Construct and interpret energy flow and food chains, webs and pyramids;
- Compare and contrast abiotic and biotic;
- Explore and explain the carbon cycle;
- Compare and contrast biomass and productivity in different trophic levels;
- Identify and explain the requirements of living organisms;
- Explain the processes of photosynthesis, respiration and fermentation;
- Explain the role of carbohydrates, lipids and proteins in living organisms;
- Identify and explain the structures and functions of nucleus, mitochondria, chloroplasts, plasma membrane, cell wall, vacuoles;
- Compare and contrast eukaryotic and prokaryotic cells;
- Compare and contrast plant and animal cells;
- Identify and explain diffusion, osmosis; factors affecting the rate of exchange of materials, surface area to volume ratio, concentration gradient;
- Identify and explain structural, physiological and behavioural adaptations of plants and animals living in terrestrial, marine and freshwater habitats;
- Explain adaptations for transport, gas exchange, excretion and for acquiring nutrients; and
- Plan and conduct biological research (scientific reports).

Course Content (2B)

During this course students will:

- Explain the relationships between organisms in communities and their impact on population size and distribution;
- Identify and explain causes of population change;
- Identify and explain the carrying capacity of an ecosystem;
- Explain the impact of population growth on ecosystems;
- Explain the influence of population dynamics including birth, death and migration rates on: population size, density, composition, and distribution;
- Conduct population calculations using birth, death and migration rates;
- Explain how reproductive processes influence the success of populations;
- Identify and explain mitosis, and its roles in growth repair and asexual reproduction;
- Explain the cell cycle;
- Compare and contrast asexual and sexual reproduction in flowering plants including structures involved in pollination and fertilisation. Plus sexual reproduction in animals;
- Compare and contrast the advantages and disadvantages of sexual and asexual reproduction for survival of species in stable and in changing environments;
- Identify and explain adaptations for improving species survival, through seed dispersal, parental care, number of offspring;
Biological Science

- Explain life cycles including metamorphosis;
- Identify and explain meiosis: roles of meiosis and fertilisation in the change of chromosome number (haploid/diploid) in a life cycle;
- Identify and explain the structure and function of DNA, genes and chromosomes;
- Predict the frequencies of genotypes and phenotypes of offspring from monohybrid crosses;
- Interpret pedigree charts for patterns of inheritance and probabilities;
- Explain the influence of the environment; and
- Plan and conduct biological research (scientific report).

Biological Science 3AB

This is a single Biological Science course which provides opportunities for applied learning, however there is a strong focus on academic learning. It is for students to extend knowledge and understandings in challenging academic learning contexts, and develop a complex understanding maintaining balance and evolution. It is suitable for students wishing to continue towards a university pathway.

Recommended Background

To be successful in this course, it is recommended that students studying Biological Science 3AB should have completed Biological Science 2AB and achieved an A/B grade in a high level of English.

Commitment

Students will be required to complete 1 hour of general study per week; minimum of 2 hours of homework per week; 30 minutes minimum of daily revision and partake in up to two excursions per year.

Course Content (3A)

During this course students will:

- Explain biodiversity in terms of genetic, species and ecosystem;
- Identify and explain the differences between types of ecosystems, including input and outputs; amount of recycling; stability and productivity;
- Explain the causes and consequences of salinity, deforestation, desertification, eutrophication, biomagnification, fire, climate change;
- Explain photosynthesis using the chemical equation of photosynthesis and factors affecting the rate of photosynthesis;
- Explain light dependent and light independent reactions;
- Explain respiration using anaerobic and aerobic pathways of cell respiration and factors affecting the rate of cellular respiration;
- Explain energy transfer using ATP and ADP cycles for cell functioning;
- Explain active transport of materials across the cell membrane;
- Explain Enzymes, including lock and key, induced fit, activation energy changes; factors which affect enzymes and the importance of enzymes;
- Identify and explain the principles of homeostasis and negative feedback;
- Identify and explain structural, behavioural and physiological adaptations in plants and animals which allow homeostasis; and
- Plan, conduct and interpret biological research (scientific report).

Course Content (3B)

During this course students will:

- Identify conservation projects and strategies for maintaining biodiversity and the prevention of extinction including: genetic strategies, captive breeding programs, DNA profiling, development of new strains;
- Identify and explain environmental strategies such as biological control, revegetation, introduced species, pest control;
- Identify and explain the use of management strategies, national parks, protected zones, licences, open seasons;
- Explain DNA in terms of replication; protein synthesis; cloning and genetic modification of organisms;
- Explain recombinant DNA techniques;
- Identify and explain applications of DNA technologies;
- Explain the significance of meiosis in terms of sources of variation including gene mutation, the independent assortment of chromosomes, crossing over during meiosis and random mating;
- Explain isolation/barriers to gene flow;
- Explain the process of natural selection leading to change in characteristics of a population such as selective pressures leading to change or extinction, loss of habitat, predation and practical application of artificial selection;
- Explain gene pools, changes in allele frequency due to: natural selection, sexual selection, the founder effect and genetic drift;
- Identify and explain evidence for evolution;
- Evidence for evolution including; fossils, embryology of vertebrates; and
- Plan, conduct and evaluate biological research (scientific report).